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Background Motivation Results

Subdivsions

• Subdivision: Of a point configuration A in R2, a
subdivision is a collection of convex polygons such that:

• The union of the polygons is conv(A)
• Each pair of polygons does not intersect or intersects at a

common vertex or side

• Triangulation: A subdivision where all polygons are
triangles

Subdivision Not a subdivisionNot a subdivision Triangulation
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Bimonotone

• Bimonotone polygon: all edges have vertical or
nonnegative slope

• Bimonotone subdivision: all polygons of the subdivision
are bimonotone

Bimonotone Not bimonotone
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Background Motivation Results

Tent Functions

• A point configuration A and a set of heights (poles) create
a tent function f

• f induces a subdivision of projected polygons on the plane
of A

Log-concave density estimation 3

Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data.

(2009) have studied its theoretical properties. Rufibach (2007) compared di↵erent algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.
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Supermodularity

• f is supermodular if
f(x) + f(y) ≤ f(min(x, y)) + f(max(x, y)) for all x, y

• To estimate an unknown distribution, the density function
p = exp(f) is used, where the poles of the tent function f
are from observed data

• If f is supermodular, then the random variables defined by
p are positively dependent on each other

• Example: An IQ test with n questions
• The joint distribution of n scores takes f(x)
• The score for each question has a density
• Scores on separate questions are positively correlated
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Bimonotone and Supermodularity

• For a tent function f , the subdivision is bimonotone if and
only if f is supermodular

• The goal of this project is to count the number of
bimonotone subdivisions and compare this to the total
number of subdivisions
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Our Work: 2× n Grids

n points︷ ︸︸ ︷

• First consider subdivisions of a 2 × n lattice grid

• To use a recursion, we extend this to grids with m points
at the top and n at the bottom

︷ ︸︸ ︷

n points

m points

︸ ︷︷ ︸
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Recursion

• Using inclusion-exclusion for the unconnectedness of the
top right and bottom right vertices, the number of
bimonotone subdivisions is

Am,n =


2Am,n−1 + 2Am−1,n − 2Am−1,n−1, m > n

2Am,n−1, m = n

0, m < n

Am−1,n Am,n−1

Am−1,n−1 An,n−1
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Recursion

• Similarly, for the total number of subdivisions,

Bm,n = 2Am,n−1 + 2Am−1,n − 2Am−1,n−1

Bm−1,n Bm,n−1

Bm−1,n−1



Background Motivation Results

Theorem

Theorem
For a lattice grid with m points at the top and n points at the
bottom:

• The number of bimonotone subdivisions is given by
Am,n = 2m−2

(n−1)!Pn(m), where Pn(m) is some monic
polynomial with degree n− 1.

• The total number of subdivisions is given by
Bm,n = 2m−2

(n−1)!Qn(m), where Qn(m) is some monic
polynomial of degree n− 1.
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Proof Idea

• Proof by induction

• We repeatedly substitute smaller terms into the recursion,
giving for Am,n:

2m−2

(n− 2)!
(Pn−1(m) + (Pn−1(m) + Pn−1(m− 1) + · · · + Pn−1(n)))

• We find the highest degree term using Faulhaber’s formula
for the sum of the pth powers of the first m positive
integers:

m∑
k=1

kp =
mp+1

p + 1
+

1

2
mp +

p∑
k=2

Bk

k!

p!

(p− k + 1)!
mp−k+1

where the Bk are the Bernoulli numbers
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Future Research

• Prove these conjectures:
• The number of bimonotone subdivisions of a 2 × n lattice

grid is 2n−1 times the nth large Schröder number
• The total number of subdivisions of a 2 × n lattice grid is

2n−1 times the nth Delannoy number

• Find recursive formulas for 3 × n and larger lattice grids

• Find closed form expressions for the number of
bimonotone/total subdivisions

• Extend formulas into higher dimensions
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