Counting Bimonotone Subdivisions

Melinda Sun
Mentor: Dr. Elina Robeva

May 19, 2018
MIT PRIMES Conference

Subdivsions

- Subdivision: Of a point configuration A in \mathbb{R}^{2}, a subdivision is a collection of convex polygons such that:
- The union of the polygons is $\operatorname{conv}(\mathrm{A})$
- Each pair of polygons does not intersect or intersects at a common vertex or side

Subdivsions

- Subdivision: Of a point configuration A in \mathbb{R}^{2}, a subdivision is a collection of convex polygons such that:
- The union of the polygons is $\operatorname{conv}(\mathrm{A})$
- Each pair of polygons does not intersect or intersects at a common vertex or side
- Triangulation: A subdivision where all polygons are triangles

Subdivsions

- Subdivision: Of a point configuration A in \mathbb{R}^{2}, a subdivision is a collection of convex polygons such that:
- The union of the polygons is conv(A)
- Each pair of polygons does not intersect or intersects at a common vertex or side
- Triangulation: A subdivision where all polygons are triangles

Subdivision

Not a subdivision

Bimonotone

- Bimonotone polygon: all edges have vertical or nonnegative slope
- Bimonotone subdivision: all polygons of the subdivision are bimonotone

Bimonotone

- Bimonotone polygon: all edges have vertical or nonnegative slope
- Bimonotone subdivision: all polygons of the subdivision are bimonotone

Bimonotone

Not bimonotone

Tent Functions

- A point configuration A and a set of heights (poles) create a tent function f
- f induces a subdivision of projected polygons on the plane of A

Tent Functions

- A point configuration A and a set of heights (poles) create a tent function f
- f induces a subdivision of projected polygons on the plane of A

Supermodularity

- f is supermodular if
$f(x)+f(y) \leq f(\min (x, y))+f(\max (x, y))$ for all x, y

Supermodularity

- f is supermodular if $f(x)+f(y) \leq f(\min (x, y))+f(\max (x, y))$ for all x, y
- To estimate an unknown distribution, the density function $p=\exp (f)$ is used, where the poles of the tent function f are from observed data

Supermodularity

- f is supermodular if $f(x)+f(y) \leq f(\min (x, y))+f(\max (x, y))$ for all x, y
- To estimate an unknown distribution, the density function $p=\exp (f)$ is used, where the poles of the tent function f are from observed data
- If f is supermodular, then the random variables defined by p are positively dependent on each other

Supermodularity

- f is supermodular if $f(x)+f(y) \leq f(\min (x, y))+f(\max (x, y))$ for all x, y
- To estimate an unknown distribution, the density function $p=\exp (f)$ is used, where the poles of the tent function f are from observed data
- If f is supermodular, then the random variables defined by p are positively dependent on each other
- Example: An IQ test with n questions
- The joint distribution of n scores takes $f(x)$
- The score for each question has a density
- Scores on separate questions are positively correlated

Bimonotone and Supermodularity

- For a tent function f, the subdivision is bimonotone if and only if f is supermodular

Bimonotone and Supermodularity

- For a tent function f, the subdivision is bimonotone if and only if f is supermodular
- The goal of this project is to count the number of bimonotone subdivisions and compare this to the total number of subdivisions

Our Work: $2 \times n$ Grids

- First consider subdivisions of a $2 \times n$ lattice grid

Our Work: $2 \times n$ Grids

- First consider subdivisions of a $2 \times n$ lattice grid
- To use a recursion, we extend this to grids with m points at the top and n at the bottom
m points

Recursion

- Using inclusion-exclusion for the unconnectedness of the top right and bottom right vertices, the number of bimonotone subdivisions is

$$
A_{m, n}= \begin{cases}2 A_{m, n-1}+2 A_{m-1, n}-2 A_{m-1, n-1}, & m>n \\ 2 A_{m, n-1}, & m=n \\ 0, & m<n\end{cases}
$$

Recursion

- Similarly, for the total number of subdivisions,

$$
B_{m, n}=2 A_{m, n-1}+2 A_{m-1, n}-2 A_{m-1, n-1}
$$

Theorem

Theorem

For a lattice grid with m points at the top and n points at the bottom:

- The number of bimonotone subdivisions is given by $A_{m, n}=\frac{2^{m-2}}{(n-1)!} P_{n}(m)$, where $P_{n}(m)$ is some monic polynomial with degree $n-1$.
- The total number of subdivisions is given by $B_{m, n}=\frac{2^{m-2}}{(n-1)!} Q_{n}(m)$, where $Q_{n}(m)$ is some monic polynomial of degree $n-1$.

Proof Idea

- Proof by induction
- We repeatedly substitute smaller terms into the recursion, giving for $A_{m, n}$:

$$
\frac{2^{m-2}}{(n-2)!}\left(P_{n-1}(m)+\left(P_{n-1}(m)+P_{n-1}(m-1)+\cdots+P_{n-1}(n)\right)\right)
$$

Proof Idea

- Proof by induction
- We repeatedly substitute smaller terms into the recursion, giving for $A_{m, n}$:

$$
\frac{2^{m-2}}{(n-2)!}\left(P_{n-1}(m)+\left(P_{n-1}(m)+P_{n-1}(m-1)+\cdots+P_{n-1}(n)\right)\right)
$$

- We find the highest degree term using Faulhaber's formula for the sum of the p th powers of the first m positive integers:

$$
\sum_{k=1}^{m} k^{p}=\frac{m^{p+1}}{p+1}+\frac{1}{2} m^{p}+\sum_{k=2}^{p} \frac{B_{k}}{k!} \frac{p!}{(p-k+1)!} m^{p-k+1}
$$

where the B_{k} are the Bernoulli numbers

Future Research

- Prove these conjectures:
- The number of bimonotone subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth large Schröder number
- The total number of subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth Delannoy number

Future Research

- Prove these conjectures:
- The number of bimonotone subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth large Schröder number
- The total number of subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth Delannoy number
- Find recursive formulas for $3 \times n$ and larger lattice grids
- Find closed form expressions for the number of bimonotone/total subdivisions
- Extend formulas into higher dimensions

Acknowledgements

I would like to thank:

- My mentor, Dr. Elina Robeva
- The MIT Math Department
- The MIT-PRIMES Program
- Dr. Slava Gerovitch
- Dr. Tanya Khovanova

